
Effects of wave damping and finite perpendicular scale on
three-dimensional Alfvén wave parametric decay in low-beta plasmas

Feiyu Li,1, a) Xiangrong Fu,2, 1 and Seth Dorfman3, 4

1)New Mexico Consortium, Los Alamos, NM 87544, USA
2)Los Alamos National Laboratory, Los Alamos, NM 87545, USA
3)Space Science Institute, Boulder, CO 80301, USA
4)University of California Los Angeles, Los Angeles, CA 90095, USA

(Dated: 14 March 2024)

Shear Alfvén wave parametric decay instability (PDI) provides a potential path toward significant wave dissipation
and plasma heating. However, fundamental questions regarding how PDI is excited in a realistic three-dimensional
(3D) open system and how critically the finite perpendicular wave scale—as found in both the laboratory and space
plasmas—affects the excitation remain poorly understood. Here, we present the first 3D, open-boundary, hybrid kinetic-
fluid simulations of kinetic Alfvén wave PDI in low-beta plasmas. Key findings are that the PDI excitation is strongly
limited by the wave damping present, including electron-ion collisional damping (represented by a constant resistivity)
and geometrical attenuation associated with the finite-scale Alfvén wave, and ion Landau damping of the child acoustic
wave. The perpendicular wave scale alone, however, plays no discernible role, with different wave scales exhibiting
similar instability growth. These findings are corroborated by theoretical analysis and estimates. The new understanding
of 3D kinetic Alfvén wave PDI physics is essential for laboratory study of the basic plasma process and may also help
evaluate the relevance/role of PDI in low-beta space plasmas.

I. INTRODUCTION

Alfvén waves represent a fundamental magnetohydrody-
namic (MHD) mode with far-reaching implications for lab-
oratory, space, and astrophysical plasmas. The interaction of
Alfvén waves with energetic particles is crucial to the per-
formance of burning fusion plasmas1. Shear Alfvén waves
are also an excellent carrier of significant magnetic and ki-
netic energy over large distances in space plasmas. Nonlinear
processes associated with large-amplitude Alfvén waves are
key to understanding several major problems such as turbulent
cascades and plasma energization. As a prominent example,
parametric instabilities are thought to potentially contribute
to solar coronal heating2, the observed spectrum and cross-
helicity of solar wind turbulence3–5, and damping of fast mag-
netosonic waves in fusion plasmas6,7. In particular, the para-
metric decay instability (PDI)8–10, well established in theory
for over half a century8–15, produces a forward propagating
ion acoustic wave (or sound wave which we use interchange-
ably hereafter) and a backward propagating Alfvén wave; this
process may directly cause plasma heating and cascades of
wave decays16,17. Theory also suggests a modulational insta-
bility, which results in forward propagating upper and lower
Alfvénic sidebands as well as a non-resonant acoustic mode
at the sideband separation frequency15.

Observational evidence of Alfvén wave PDI in space
plasma has been reported. A satellite measurement in the
ion foreshock region found a number of possible PDI events,
yet the results were inconclusive as the “decay line” signa-
tures were missing in many intervals18. An analysis of WIND
spacecraft data suggested that the fluctuations of magnetic
field and plasma density in the solar wind at 1 AU may be
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limited by the PDI19. Hahn et al. recently reported an obser-
vational evidence of PDI in the lower solar atmosphere using
remote measurements of spectral lines20. However, space ob-
servations can be limited (e.g. by a turbulent environment and
the lack of control over the process) and especially challeng-
ing in the near-Sun low-beta region, where the PDI is pre-
dicted to have largest growth rates.

To fully elucidate the relevance and role of PDI in space
plasma dynamics, more controlled studies using either labora-
tory experiments or numerical modeling are needed. Such in-
vestigations under dimensionless and scaled parameters simi-
lar to that of some space plasma regions21–23 will help validate
PDI theories and gain new insights into the spatiotemporal
behavior and consequences of this basic plasma wave phe-
nomenon. Experimental progress has been made over the past
decade in studying PDI-related physics with the Large Plasma
Device (LAPD), a flagship device hosted at UCLA uniquely
suited for studying space-relevant Alfvén waves in low-beta
plasmas24–32. Using two counter-propagating Alfvén waves
of comparable amplitudes, the three-wave coupling at the
heart of PDI was verified by measuring a clear resonant
peak in the acoustic beat wave response.31; more recently,
PDI growth rates have been inferred from a reduction in
the damping of a small-amplitude, counter-propagating seed
wave when a large-amplitude pump wave is turned on33. Nev-
ertheless, these experiments have thus far not been able to pro-
duce PDI in its standard form driven by a single Alfvén wave.
When using a single wave driver, Alfvén wave sidebands and
a low frequency nonresonant mode were produced32. How-
ever, the spatial pattern of the child modes does not match pre-
dictions for the standard perpendicular wavenumber k⊥ = 0
modulational instability, suggesting that perpendicular non-
linear forces play a key role in the observations. The standard
k⊥ = 0 modulational instability is also predicted to have a sig-
nificantly smaller growth rate than PDI under the chosen set
of experimental parameters15.
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On the other hand, extensive numerical modeling of PDI
has been conducted, using either MHD simulations4,34, hybrid
simulations35–42, or even full particle simulations43,44. How-
ever, a periodic infinite system has been routinely adopted by
many of these studies, lacking direct relevance to both the
laboratory and space plasma settings which feature an open
system with wave injection. Preliminary open-boundary sim-
ulations showed distinct energy transfer and partition from
usual periodic boundary interactions41. More critically, most
of these simulations have focused on investigating the con-
sequences of PDI, without addressing what conditions are
needed to excite PDI in the first place. This problem is non-
trivial as partly illustrated by the difficulty in demonstrating
PDI in the laboratory, and directly determines the relevance
of PDI in space plasmas.

Toward addressing the excitation problem, we have recently
developed quasi-1D open-boundary hybrid simulations focus-
ing on LAPD-relevant conditions42, and found the thresh-
old amplitudes and frequencies of a planar zero-k⊥ Alfvén
wave required for exciting PDI under given plasma param-
eters. Physically, these thresholds were obtained by requir-
ing PDI to grow faster than Landau damping of the acoustic
mode, as well as the convective motion of both child modes
in a bounded plasma. While the result is of interest to both
the laboratory and space study at large perpendicular wave
scales (i.e. the spatial extent across the background magnetic
field), Alfvén waves in both contexts can also develop sig-
nificant wave k⊥. In the low-beta solar coronal region, large
k⊥ may be induced by transverse plasma gradients, resonance
absorption, and turbulent cascade17,45,46. In the laboratory,
k⊥di ≫ 1 (di is the ion inertial length) due to the finite perpen-
dicular antenna size necessary to fit the wave in the laboratory
plasma column47. These finite-k⊥ kinetic Alfvén waves carry
significant parallel electric current channels46,48, fundamen-
tally different from the plane-wave scenario42. How the PDI
excitation may be modified by the new 3D features remains
poorly understood. Furthermore, previous PDI theories were
mostly derived for k⊥ = 0 plane waves9,10,15, although some
theoretical/numerical studies allowed for child/parent waves
with finite k⊥38,49,50. It is not clear, and no present theory
explores, how k⊥ associated with a finite-perpendicular-scale
pump wave may influence PDI development.

In the present work, we present for the first time 3D open-
boundary hybrid simulations of PDI driven by a single Alfvén
wave of finite perpendicular scale. Our central new results are
that the PDI excitation is found to be strongly limited by 3D
wave damping of the child modes, including both the Alfvén
wave damping and acoustic wave damping. Currently consid-
ered by the simulations are i) electron-ion collisional damp-
ing (represented by a constant resistivity η51) and geomet-
rical attenuation associated with the finite-frequency, finite-
source-size Alfvén wave47, and ii) ion Landau damping of the
child acoustic wave. On the other hand, for a given magnitude
of wave damping, the PDI excitation in a low-beta plasma is
found to have no discernible dependence on k⊥ alone, as long
as the parallel ponderomotive force remains constant. This
lack of a dependence on k⊥ means that existing laboratory
experiments, which can only produce highly oblique Alfvén

waves, may still be capable of demonstrating PDI excitation.
In space plasmas, the effectiveness of PDI under large k⊥ is
important to establishing the relevance of PDI as wave energy
cascades in the perpendicular direction towards a small dissi-
pation scale.

II. 3D OPEN-BOUNDARY HYBRID SIMULATION OF PDI
WITH A SINGLE FINITE-SCALE ALFVÉN WAVE

We start by introducing the 3D simulation setup (Fig. 1)
based on the H3D code52, which models kinetic ions plus
a massless electron fluid. The box/plasma occupies z =
[0,100]di along the background magnetic field (B0) direction,
and two field masks (used for absorbing Alfvén waves41) oc-
cupy z = [0,30]di and z = [70,100]di. Only the central region
z = [30, 70]di, containing actual Alfvén wave-plasma inter-
actions, is displayed. The cell size along z is ∆z = 0.5di.
In this example, the perpendicular dimensions are of size
Lx = Ly = 10di and sampled by 80 × 80 cells. The ions
are sampled by 125 macro-particles per cell. The electron
fluid follows the adiabatic equation of state Te/nγe−1

e = const,
where ne is the electron density and γe = 5/3. The time step
is ∆t = 0.01Ω

−1
ci where Ωci is the ion cyclotron frequency.

The injection fields of a finite-scale, left-hand circularly po-
larized Alfvén wave are obtained as follows. First, in Simula-
tion #1, a linearly polarized Bx field is prescribed at z = 35di
with an amplitude δBx/B0 = Acos[π(x− x0)/2rs]cos[π(y−
y0)/2rs]cos(ω0t) for r ≤ rs and δBx/B0 = 0 otherwise, where
A ≪ 1 (to avoid nonlinear interactions), rs = Lx/8 is the wave
source radius, (x0,y0) represents the center of the perpendicu-
lar plane, and ω̃0 ≡ω0/Ωci = 0.31; then the downstream mag-
netic fields (both x, y components) at the perpendicular plane
z = 40di, t = 100Ω

−1
ci are extracted as the first set of base

fields (Bx1, By1). We repeat this process in Simulation #2,
where we prescribe a linearly polarized By field and obtain
the second set of base fields (Bx2, By2). For actual physics
runs, we inject the Alfvén wave by prescribing at z = 35di the
following combined base fields:

Bx =
δBx

B0

[
Bx1

Bmax
1

cos(ω0t)− Bx2

Bmax
2

sin(ω0t)
]
, (1a)

By =
δBy

B0

[
By1

Bmax
1

cos(ω0t)−
By2

Bmax
2

sin(ω0t)
]
, (1b)

where δBx/B0 = δBy/B0 ≡ δB/B0 is the normalized wave
amplitude and Bmax

1 , Bmax
2 are the maximum value of√

B2
x1 +B2

y1,
√

B2
x2 +B2

y2, respectively. The injection con-

tains a small ring-up time of 50Ω
−1
ci and lasts for 3000Ω

−1
ci

The dispersion relation of resulting Alfvén wave in the down-
stream was checked and verified.

The transverse field patterns both at the injection and down-
stream are displayed in Figs. 1(d1-d4). As the finite-scale
wave propagates essentially in an Alfvén wave cone47, the
wave pattern rotates and spans multiple cycles in the perpen-
dicular plane, giving a dominant k⊥ ≃ 2.75/rs (following a
Bessel function fit47). This simulation case uses parameters
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FIG. 1. 3D open-boundary hybrid simulation of PDI driven by a finite-scale, circularly polarized Alfvén wave. (a-c) 3D isosurfaces of the
perpendicular wave magnetic field at t = 200Ω

−1
ci , parallel electric current density at t = 200Ω

−1
ci , and ion density fluctuations at t = 2000Ω

−1
ci ,

respectively. (d1-d4) The xy-cut of perpendicular magnetic field at z = 35,40,50,60di, respectively, taken at t = 200Ω
−1
ci . (d1) corresponds to

the plane at which the wave is injected. (e-g) The magnetic field envelope |δBy/B0| and the density fluctuations probed at (x,y,z) = (5,5,41)di
and their corresponding Fourier spectra (obtained over the the full time window shown). In (e) the envelope of the field oscillation is shown,
and its spectrum in (f) is performed on the fast field oscillations not shown in (e). The vertical dashed line in (f,g) refers, respectively, to the
frequency of the child Alfvén wave and ion acoustic wave, as predicted from PDI theories8–10.

ω̃0 = 0.63, Te/Ti = 9, and total beta β = βe +βi = 1×10−3.
Figure 1(a) shows the contour surface of the perpendicular
wave field B⊥ =

√
B2

x +B2
y (for an initial injection of am-

plitude δB/B0 = 0.01) at t = 200Ω
−1
ci , well before the onset

of PDI. This finite-scale wave contains two rotating parallel
electric currents [Fig. 1(b)]. The parallel currents exert an in-
fluence on both the wave fields and ion dynamics through a
constant resistivity η = 4πνei/ω2

pe used in the hybrid code to
mimic electron-ion collisions, where νei is the collisional rate
and ωpe the electron plasma frequency; see the Ohm’s law and
ion motion equation of the hybrid system51:

E +
ui ×B

c
= ηJ+

1
qinic

J×B− 1
qini

∇Pe, (2)

mi
dvi

dt
= qi(E + vi ×B/c)− eηJ, (3)

where E is the electric field, Pe is the electron pressure tensor,
J is the total plasma current, e is the elementary charge, c is
the light speed in a vacuum, and (ui,vi,qi,mi,ni) are the en-
semble ion speed, individual ion speed, ion charge, ion mass,
and ion density, respectively. In the present case, the normal-
ized resistivity used in the code is η̃ = ηωpi/4π = 1× 10−5

(ωpi is the ion plasma frequency).
The evidence of PDI is partly illustrated by the density fluc-

tuations shown at t = 2000Ω
−1
ci [Fig. 1(c)], after the instabil-

ity has sufficiently developed. The fluctuations are associated

with the child acoustic wave, which co-propagates with the
pump Alfvén wave. The acoustic wave develops bowed iso-
surfaces as a result of nonlinear frequency shifts, i.e. cen-
tral axis corresponds to larger wave amplitudes and more fre-
quency shifts toward the smaller end. To further confirm the
PDI signatures, we probe the temporal evolution of the field
envelope |δBy/B0| and ion charge-density fluctuations δn/n0
at a fixed location and display the result in Fig. 1(e). These
fluctuations start to emerge after a few hundreds of Ω

−1
ci and

continue to increase throughout the simulation. The B field
envelop oscillates due to the pump beating with the child
Alfvén wave with a frequency difference ∆ω = ω0 −ω1, and
the density fluctuation oscillates at the eigen acoustic wave
frequency ω . Their growth matches each other in time, and
their similar oscillation frequency ∆ω ≃ ω verifies the fre-
quency matching condition ω0 = ω1 +ω as required for PDI
coupling8–10. The frequency matching is also revealed in the
spectra, Figs. 1(f, g), where the predicted frequencies of the
child waves are indicated by the vertical dashed lines. The
excitation is so strong in this case that PDI coupling with har-
monics of the acoustic mode Nω (N is an integer) is also vis-
ible.

III. EFFECTS OF 3D WAVE DAMPING

The more realistic 3D finite-scale injection involves two
new features (compared to a plane wave injection42): i) The
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FIG. 2. Effects of wave damping on PDI, while keeping the perpendicular wave scale k⊥di fixed to 2.2. The simulations correspond to the
same beta β = 5×10−4, Te/Ti = 4, and ω0/Ωci = 0.63, with the resistivity shown in the titles. Panel (a) shows the central xz-cuts of the wave
field component δBy/B0. Panel (b) shows the space-time evolution of the density fluctuation on the central axis (x,y) = (5,5)di. (c,d) The
Fourier spectra of δBy/B0 and density fluctuations δn/n0 probed at (x,y,z) = (5,5,41)di for all four cases. (e) Theoretical calculation of the
damping rate geometrical mean (Γ1Γ2)

1/2/ω0 versus varying η̃ and its comparison with the growth rate γg/ω0.

Alfvén wave itself suffers from damping, including resistive
damping [see Eq. (2)] and geometrical attenuation induced
equivalent damping47. ii) The finite k⊥ associated with the
finite perpendicular scale. While the wave damping is also
dependent on k⊥ (as we will see more clearly later), we will
explore the effects of these two new features separately. Iso-
lating the effects of k⊥ is of interest because k⊥ is potentially
an important parameter determining PDI growth38,50.

We first examine the effects of wave damping on PDI exci-
tation using a set of simulations with the outcome summa-
rized in Fig. 2. The magnitude of wave damping in these
runs is controlled by the constant resistivity η̃ , while the wave
k⊥ is fixed as the cases have the same perpendicular dimen-
sions and same source radius as used for Fig. 1 (Lx,Ly =

10di, rs = Lx/8 = 1.25di). The total beta is β = 5× 10−4

with Te/Ti = 4. For each run, we display a snapshot of cen-
tral xz-cut of the wave field component δBy/B0 at t = 200Ω

−1
ci

(before PDI develops) in Fig. 2(a) and the space-time evolu-
tion of on-axis density fluctuations till the end of the simula-
tion tmax = 3000Ω

−1
ci in Fig. 2(b). It is seen that by increas-

ing η̃ from 1× 10−5 to 5× 10−5, the damping of the Alfvén
wave is indeed much enhanced. While the density fluctua-
tion (evidence of PDI) is strong for η̃ = 1×10−5, it becomes
much weaker for η̃ = 2×10−5 and nearly disappeared when

η̃ ≥ 3 × 10−5. Figures 2(c,d) show more quantitative evi-
dence of PDI by looking at the probe data (as done for Fig. 1);
similarly, prominent spectral peaks for the child Alfvén wave
[Fig. 2(c)] and child acoustic mode [Fig. 2(c)] are found only
for η̃ ≤ 2×10−5.

To physically and more quantitatively understand the wave
damping effects, we estimate the damping rate for each damp-
ing mechanism. The resistive Alfvén wave damping essen-
tially comes from the damping of the channel currents through
electron-ion collisions (represented by η). The total magnetic
field evolves according to ∂B

∂ t = ∇× (ui ×B)− c2

4π
η∇× (∇×

B)+ c
4πqi

∇× [ 1
ni

B× (∇×B)], obtained by substituting Fara-
day’s law and Ampere’s law into Eq. (2). The first term on the
right-hand side denotes motion of field lines frozen-in to the
plasma, the second term denotes the resistivity-induced dif-
fusion with the diffusion rate Dr =

c2

4π
ηk2, the third term is

the Hall term, and the electron pressure term is dropped as we
consider an isotropic pressure. A two-fluid analysis53 finds
that the resistive damping rate is related to the diffusion rate
as Γr =

1
2(1+k2

z d2
i +k2

z d2
e )

Dr =
1

2(1+k2
z d2

i )
Dr, where kzde → 0 for

our massless electron fluid. By normalizing to the pump wave
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frequency, the resistive damping rate can be cast as

Γr

ω0
=

1
2

1+ k2
⊥/k2

z

1− ω̃2
0 k2

⊥ρ2
i + k2

⊥ρ2

ωpi

Ωci
ω̃0η̃ , (4)

where ρ2 = ρ2
s + ρ2

i , ρs is the ion sound gyroradius, ρi the
ion gyroradius, and we have used the dispersion relation for a
finite-frequency, finite-scale kinetic Alfvén wave54

ω0

kz
= vA

√
1− ω̃2

0 (1+ k2
⊥ρ2

i )+ k2
⊥ρ2 ≡ vA

√
Ξ. (5)

The equivalent Alfvén wave damping associated with geo-
metrical attenuation may be estimated as follows. The wave
source radius rs at the injection increases by drs within dz
propagation distance, according to the Alfvén wave cone an-

gle tanθ = drs
dz =

vg,⊥
vg,z

= ∂kz
∂k⊥

=
√

β

2
k⊥ρs+

√
Ti/Tek⊥ρi(1−ω̃2

0 )

Ξ3/2 ω̃0
47

where β = 2(cs/vA)
2, cs =

√
Te+Ti

mi
is the sound speed, and

vg,⊥ = ∂ω0/∂k⊥, vg,z = ∂ω0/∂kz are the perpendicular and
parallel group velocity, respectively. Without wave dissi-
pation, the wave energy conservation at the two locations
requires (δB1)

2r2
s = (δB2)

2(rs + drs)
2, which gives δB2

δB1
≃

1−drs/rs = 1− tanθ

rs
dz. Comparing δB2

δB1
with an exponential

on-axis wave damping/reduction due to geometrical spread-
ing δB = (δB)0 exp(−Sgdz)≃ (δB)0(1−Sgdz), one has Sg =
tanθ

rs
≃ 0.36k⊥ tanθ . Converting to the temporal damping rate

gives

Γg

ω0
=

Sgvg,z

ω0
= 0.26

k⊥
kz

k⊥ρs +
√

Ti/Tek⊥ρi(1− ω̃2
0 )

Ξ3/2 +(1+ k2
⊥ρ2

i )ω̃
2
0 Ξ1/2 ω̃0

√
β ,

(6)
where vg,z =

ω0/kz
1+(1+k2

⊥ρ2
i )ω̃

2
0 /Ξ

.

Finally, the ion acoustic wave (or sound wave) Landau
damping rate may be estimated as42

Γs

ω0
≃ 2

√
β

√
Ti

Te
. (7)

The resistivity also incurs a friction force −eηJ on the ion
motion, as seen in Eq. (3). However, the friction force works
through the current channels, which reside off the central axis.
Therefore, the potential impact of the friction force on the
damping of ion acoustic wave mostly located around the cen-
tral axis can be neglected.

In a system with significant wave damping present, the PDI
may be excited only if the following condition is satisfied55,56:

γg/ω0 >
√

Γ1Γ2/ω0 ≡ Γgm/ω0, (8)

where γg ≃ 1
2 (δB/B0)/β 1/4 is the PDI growth rate obtained

for k⊥ = 0 and Γgm is the damping rate geometrical mean
constructed from the damping rates of the two child modes:
Γ1 = Γr +Γg, Γ2 = Γs. The use of zero-k⊥ growth rate will
be justified later where PDI excitation shows no discernible
dependence on k⊥ alone. Additionally, we essentially use
the pump wave damping to approximate child Alfvén wave

damping, because the two waves have the same nature except
for a minor frequency difference ∼ 2

√
βω0 at low beta. To

test Eq. (8), we substitute the common simulation parameters
ω0/Ωci = 0.63, ωpi/Ωci = 300, β = 5×10−4, Te/Ti = 4 and
k⊥di = 2.2 into (Γr,Γg,Γs,γg). We take the wave amplitude
δB/B0 = 0.8×10−2 at z = 41di (close to the injection, where
PDI is probed) for the growth rate calculation; if PDI cannot
be excited close to the injection, it cannot be excited in the rest
of the domain where the wave amplitudes are smaller. The re-
sult shows that Γg/ω0 ≃ 2.9×10−4, Γs/ω0 ≃ 2.2×10−2, and
γg/ω0 ≃ 2.7× 10−2, i.e. γg > Γs ≫ Γg. Therefore, whether
PDI can be excited is strongly dependent on the resistive
damping Γr/ω0. By varying η̃ (hence Γr/ω0), the two sides
of Eq. (8) plotted in Fig. 2(e) shows that Eq. (8) is satisfied
only for η̃ < 4×10−5. The good agreement with the 3D sim-
ulations confirms our physical understanding and underscores
the importance of wave damping for PDI excitation by a 3D
finite-scale kinetic Alfvén wave. Notice that Eq. (8) neces-
sarily modifies the threshold Alfvén wave amplitude obtained
in the plane-wave study42, due to the new 3D wave damping
presented here.

IV. EFFECTS OF FINITE PERPENDICULAR SCALE

We next explore the effects of finite perpendicular wave
scale on PDI excitation, by varying k⊥ and maintaining con-
stant wave damping. Since the resistive damping [Eq. (4)] and
geometrical attenuation [Eq. (6)] also change with k⊥, we si-
multaneously adjust η̃ in the simulations to keep Γgm close
to constant. Figure 3 displays the outcome of three cases sat-
isfying the above requirements, where we increase the wave
source radius from 1.25di, 5di, to 7.5di with corresponding
normalized resistivity adjusted to be η̃ = 1,4,5× 10−5, re-
spectively. With these parameters and their common setup
δB/B0 ≃ 0.8 × 10−2 (at the probe point), ω0/Ωci = 0.63,
and ωpi/Ωci = c/vA = 300, the Alfvén wave damping for
the three cases, (Γr + Γg)/ω0, is kept at about 0.006. As
shown in Figs. 3(a1-a3), the wave magnetic field δBx/B0 in-
deed have similar spatial wave damping profile. The sound
wave damping, Γs/ω0 ≃ 0.022, has no dependence on k⊥.
Therefore, the wave damping geometrical mean for all three
cases is Γgm/ω0 ≃ 0.012. The simulation results shown in
Fig. 3 reveal little difference in PDI excitation, both in terms
of the space-time evolution of on-axis density fluctuations and
probed spectra, despite the factor of six difference in k⊥di
among the three cases. This result strongly suggests that the
PDI excitation has no discernible dependence on the perpen-
dicular wave scale alone.

The result may seem to contradict some 1D/2D periodic-
boundary simulations of a finite-k⊥ plane Alfvén wave re-
ported previously38, where a cosθkB dependence of PDI
growth rate was extracted (θkB = arctan(k⊥/kz) is the normal
angle of the oblique Alfvén wave). The three cases shown in
Fig. 3 have k⊥/kz ≃ 2.71,0.68,0.45, corresponding to a wave
normal angle of 70, 34, 24 degrees and cosθkB of 0.35, 0.83,
0.91, respectively, which span a variation large enough to dis-
cern the potential consequences of the cosθkB dependence.
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FIG. 3. Effects of perpendicular wave scale on PDI excitation under constant wave damping. The simulations correspond to the same beta
β = 5×10−4 and Te/Ti = 4 but varying perpendicular wave scales (see the titles). To maintain constant damping, the normalized resistivity
for the cases shown from left to right is adjusted to be η̃ = 1,4,5× 10−5, respectively. Panels (a-d) have the same format with Fig. 2. (e)
Dependence of kzdi on the perpendicular wave scale for a kinetic Alfvén wave, calculated for different β and same Te/Ti = 4, ω0/Ωci = 0.63.

The contradiction may be understood as follows. In their
plane-wave scenario, the Alfvén wave was loaded with wave-
length λ0 along z, and θkB was introduced by tuning the B0 di-
rection away from z; as a result, the parallel wavelength along
the background field becomes λ∥ = λ0/cosθkB, the perpen-
dicular wave electric field is δE⊥ = δE cosθkB, and the wave
frequency ω = k∥vA is cosθkB times smaller. This results in
cosθkB times smaller parallel ponderomotive force which has
the form Fp,∥ ∝ ω−2∇∥(δE⊥)

2. However, in the present finite-
scale scenario, the parallel wavelength or kz changes with
the source scale according to the dispersion relation Eq. (5),
which can be recast as

kzdi = ω̃0/

√
1− ω̃2

0 (1+
1
2

k2
⊥d2

i βi)+
1
2

k2
⊥d2

i (βi +β ), (9)

where we have used k2
⊥ρ2

s = 1
2 k2

⊥d2
i β and k2

⊥ρ2
i = 1

2 k2
⊥d2

i βi. A
calculation of kzdi versus a broad range of perpendicular wave
scales under different β is shown in Fig. 3(e). It is seen that,
despite the large k⊥ or θkB, the parallel wavelength depends
only weakly on the source size, especially for the low-beta
regime with β < 10−2. Meanwhile, the driving frequency is
fixed and the perpendicular wave field δB⊥ remains the same
as the cases in Fig. 3 are tuned to have similar wave damping.
Therefore, the parallel ponderomotive force in our scenario
is similar, leading to similar PDI growth when varying the
perpendicular wave scale alone.

V. DISCUSSION

These 3D simulations and associated analyses suggest that
the wave damping is the major limiting factor for driving
finite-scale Alfvén wave PDI in a uniform background, while
k⊥ alone shows no discernible influence. As illustrated by
Eq. (4), Eq. (6) and Eq. (7, the wave damping depends on
multiple parameters, e.g. the electron-ion collisional rate
νei, wave normal angle ∝ k⊥/kz, driving frequency ω̃0, to-
tal plasma beta β , temperature ratio Te/Ti, and the absolute
Alfvén speed vA/c. The explicit scaling versus these parame-
ters will help extrapolate to a broad range of parameters with
relevance to both the laboratory and space plasmas.

The low-beta laboratory plasma usually involves highly
oblique waves k⊥di ∼ O(10) and Te/Ti ≫ 1, ω̃0 ≲ 1. With
a typical set of LAPD parameters, δB/B0 = 0.7×10−2, ω̃0 =
0.6, c/vA = 660, ne = 3.5×1012cm−3, β = 1×10−3, Te/Ti =
5.5, rs = 0.18di, η̃ = 1×10−6 (νei = 8.6 MHz, electron skin
depth de ≃ 3 mm), and the ion species He+, the calculated
resistive damping is Γr/ω0 ≃ 0.084, geometrical attenuation
rate Γg/ω0 ≃ 0.026, sound wave damping Γs/ω0 ≃ 0.027 and
the damping rate geometrical mean Γgm/ω0 ≃ 0.055, while
the growth rate under this set of parameters is only γg/ω0 ≃
0.02. The damping rate is almost thrice larger, which may
explain why PDI has been difficult to excite on LAPD using
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a single wave driver. Actual experiments also involve elec-
tron Landau damping of the Alfvén wave and ion-neutral col-
lisional damping of the sound wave, which will further raise
the damping rates and thereby constrain PDI excitation.

To excite PDI essentially requires the PDI growth to over-
come the wave damping. While a smaller k⊥ helps reduce
Alfvén wave damping Γr and Γg significantly, a new, next-
generation laboratory facility would be required to launch an
Alfvén wave with a much larger perpendicular size (k⊥di <
1)23. Yet our study shows that the PDI growth is not compro-
mised by the large k⊥. Therefore, future optimization strate-
gies should focus on reducing wave damping for currently
achievable values of k⊥ by varying other parameters. One
option is to achieve higher electron temperatures, while main-
taining a cold ion population. Hotter electrons will reduce
electron Landau damping and electron-ion collisional damp-
ing (e.g. η in our simulations) of the Alfvén wave; a larger
temperature ratio Te/Ti will help suppress the sound wave
damping. Higher electron temperatures may also improve
antenna-plasma coupling48, leading to larger driving wave
amplitudes δB/B0. To achieve PDI excitation in a bounded
laboratory plasma, care must also be taken to operate at suf-
ficiently high driving wave frequency42. Based on the 3D
damping effects elucidated in this paper, it may be benefi-
cial to operate at as low of a pump frequency as possible to
both minimize Alfvén wave damping and increase the parallel
(along z) ponderomotive force, i.e. Fp,z ∝ kz/ω̃2

0 ∝
1

ω̃0
√

1−ω̃2
0

becomes bigger at smaller ω̃0.

The low-beta space plasmas, on the other hand, have dis-
tinct wave and plasma properties from the laboratory (al-
beit similar dimensionless/scaled parameters, for example, in
the solar coronal region57), such as a very low frequency
ω̃0 ≪ 1, comparable electron/ion temperatures Te/Ti ∼ 1, and
a large wave amplitude δB/B0

58,59. Taking δB/B0 = 0.2,
ω̃0 = 0.01, c/vA = 600, β = 2 × 10−2, Te/Ti = 1, k⊥di =
0.55 and η̃ = 1× 10−8 for example, a calculation based on
the present framework shows that the growth rate γg/ω0 ≃
0.27 is much larger than the damping rate geometrical mean
Γgm/ω0 ≃ 0.02, where Γr/ω0 ≃ 9×10−5, Γg/ω0 ≃ 1×10−3,
and Γs/ω0 ≃ 0.28. Therefore, it is potentially much easier to
excite PDI in space plasma than in the laboratory. Interest-
ingly, while Γgm is small, a significant sound wave damping
Γs ∼ γg ≫Γgm is allowed owing to the way Γgm is constructed.
In other words, PDI in this space-relevant case is mainly fa-
cilitated by the negligible Alfvén wave damping, while the
appreciable sound wave damping facilitates final PDI energy
dissipation. Certainly, the above estimates based on a uniform
background may be complicated by the strong inhomogeneity
present in space plasmas. In particular, the Alfvén wave in the
solar coronal region may develop large k⊥17,45,46 among other
complications. The independence of PDI versus k⊥ alone, as
discovered in this work, will be of key importance to estab-
lishing the relevance of PDI at small dissipation scales.

VI. SUMMARY

In summary, we have presented the first 3D open-boundary
hybrid simulations of PDI driven by a single Alfvén wave of
finite perpendicular scale. It is found that the PDI excitation
is strongly limited by 3D wave damping, while the perpendic-
ular wave scale (k⊥) alone plays no discernible influence on
PDI. These results are crucial to understanding the excitation
criteria of Alfvén wave PDI in a practical 3D open system.
In the laboratory with very small-scale waves, PDI is mainly
hindered by the strong wave damping. Strategies to optimize
experimental parameter to minimize the damping rates and
enhance PDI growth rate are briefly discussed, which will be
essential for demonstrating PDI in future laboratory experi-
ments. In low-beta space plasmas, PDI excitation will benefit
greatly from our finding that the PDI growth rate has no dis-
cernible dependence on k⊥ alone, and the Alfvén wave prop-
erties in space are more likely to make PDI a relevant and im-
portant scheme leading to wave dissipation at both large and
small scales. Future studies would involve elaborating on the
dynamics/consequences of finite-scale Alfvén wave PDI with
the 3D open system, as well as developing more comprehen-
sive simulation models to include both electron Landau damp-
ing and ion-neutral collisional damping that are absent in the
current hybrid code. It would also be important to investigate
the effects of a nonuniform background (both in the perpen-
dicular and parallel directions) which is commonly found in
space plasmas.
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